Jump to main content
Jump to site search

Issue 34, 2018
Previous Article Next Article

A wide-bandgap polymer based on the alkylphenyl-substituted benzo[1,2-b:4,5-b′]dithiophene unit with high power conversion efficiency of over 11%

Author affiliations

Abstract

A novel wide-bandgap conjugated polymer (PTZP) based on alkylphenyl-substituted benzo[1,2-b:4,5-b′]dithiophene (BDT-P) as the electron-rich unit and thiazolo[5,4-d]thiazole (TTz) as the electron-deficient unit was designed and synthesized for the non-fullerene polymer solar cell (PSCs) application. The polymer exhibited a wide bandgap of 2.01 eV with a strong absorption in the range of 300–620 nm, which was complementary with that of the fused-ring small molecule acceptor (SMA; 2,2′-((2Z,2′Z)-((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile, IDIC). Also, the polymer exhibits a deep highest occupied molecular orbital (HOMO) energy level of −5.41 eV. Furthermore, the polymer film possesses strong crystallinity and dominated face-on stacking with a small d-spacing of 3.65 Å, resulting in a high hole mobility of 4.01 × 10−3 cm2 V−1 s−1. The optimal PSCs based on the PTZP:IDIC blend showed a high PCE of 11.8% with an open-circuit voltage (Voc) of 0.90 V, a short-circuit current density (Jsc) of 17.9 mA cm−2 and a fill factor (FF) of 73.3%. Moreover, the device with an active layer thickness of up to 200 nm or area of up to 0.81 cm2 exhibited outstanding performance, with PCE of over 10%, resulting from the excellent molecular stacking. These results revealed that PTZP will be a promising conjugated polymer for the fabrication of efficient large-area PSCs.

Graphical abstract: A wide-bandgap polymer based on the alkylphenyl-substituted benzo[1,2-b:4,5-b′]dithiophene unit with high power conversion efficiency of over 11%

Back to tab navigation

Supplementary files

Publication details

The article was received on 19 Jun 2018, accepted on 27 Jul 2018 and first published on 31 Jul 2018


Article type: Paper
DOI: 10.1039/C8TA05868G
Citation: J. Mater. Chem. A, 2018,6, 16529-16536
  •   Request permissions

    A wide-bandgap polymer based on the alkylphenyl-substituted benzo[1,2-b:4,5-b′]dithiophene unit with high power conversion efficiency of over 11%

    X. Guo, W. Li, H. Guo, B. Guo, J. Wu, W. Ma, M. Zhang and W. Wong, J. Mater. Chem. A, 2018, 6, 16529
    DOI: 10.1039/C8TA05868G

Search articles by author

Spotlight

Advertisements