Issue 35, 2018

An efficient reduced graphene-oxide filter for PM2.5 removal

Abstract

Air pollution has a considerable impact on human beings among environmental problems. In particular, particulate matter less than 2.5 micrometers in diameter (PM2.5) is the biggest problem that threatens human health. In this work, we present a filter that removes PM2.5 at high efficiency with a low pressure-drop. A high surface area afforded by a two-dimensional nanomaterial of reduced graphene oxide (rGO) and a highly porous structure provided by rGO foam render the filter efficient and enable low pressure drop operation. The filter with the rGO foam formed on both sides of a copper mesh plays the role of removing the outdoor PM and at the same time purifying the indoor PM efficiently. Repeated regeneration and reuse with little loss of efficiency demonstrates the robustness of the filter. Additionally, its quality factor which represents overall efficiency was almost twice the best ever reported in the literature. With advantages such as simple fabrication, easy scaling-up, bidirectionality, and low power consumption, the filter presented here would exemplify the desirable set of characteristics for PM removal filters.

Graphical abstract: An efficient reduced graphene-oxide filter for PM2.5 removal

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2018
Accepted
06 Aug 2018
First published
07 Aug 2018

J. Mater. Chem. A, 2018,6, 16975-16982

An efficient reduced graphene-oxide filter for PM2.5 removal

W. Jung, J. S. Lee, S. Han, S. H. Ko, T. Kim and Y. H. Kim, J. Mater. Chem. A, 2018, 6, 16975 DOI: 10.1039/C8TA04587A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements