Jump to main content
Jump to site search

Issue 28, 2018
Previous Article Next Article

Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity

Author affiliations

Abstract

We develop a facile laser-irradiation induced alloying and subsequent chemical etching method to prepare spongy AuAgPt alloy nanospheres (spongy AuAgPt NSs) with high-index facets, rich grain boundaries and subtle lattice distortion as highly active electrooxidation catalysts. The key to preparing such spongy AuAgPt NSs for their excellent electrocatalytic activity is the alloying process induced by laser irradiation, forming rich grain boundaries and subtle lattice distortion due to the quick fusion and quenching process, which is completely different from traditional thermal annealing alloying. After chemical dealloying, the nanopores were formed and a large amount of high-index facets were successfully introduced into the spongy AuAgPt NSs. The spongy AuAgPt NSs exhibited superior methanol oxidation reaction (MOR) activity (1.62 A mgPt−1), which was 5.1 times higher than that of Pt black (0.32 A mgPt−1), and they also showed outstanding stability for the MOR after long-term cycles. The enhanced catalytic activity could be attributed to the abundant high-index facets, grain boundaries and subtle lattice distortion of spongy AuAgPt NSs formed in this laser-irradiation induced alloying and subsequent chemical etching process. The present work provides a new efficient strategy for the rational design of 3D spongy electrocatalysts with both high activity and improved durability for promising applications in electrocatalysis, biosensing, energy conversion, etc.

Graphical abstract: Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity

Back to tab navigation

Supplementary files

Publication details

The article was received on 03 May 2018, accepted on 11 Jun 2018 and first published on 16 Jun 2018


Article type: Paper
DOI: 10.1039/C8TA04087G
Citation: J. Mater. Chem. A, 2018,6, 13735-13742
  •   Request permissions

    Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity

    T. Zhang, Y. Bai, Y. Sun, L. Hang, X. Li, D. Liu, X. Lyu, C. Li, W. Cai and Y. Li, J. Mater. Chem. A, 2018, 6, 13735
    DOI: 10.1039/C8TA04087G

Search articles by author

Spotlight

Advertisements