Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Developing durable, nonprecious hydrogen evolution reaction (HER) electrocatalysts with Pt-like performance is desirable but remains challenging. Here we report a one-step electroless synthesis of an amorphous Co2.90B0.73P0.27 ternary alloy and its application as a new highly active and robust HER catalyst. The synthesized Co2.90B0.73P0.27 nanosheets supported on Ni foam exhibit remarkable catalytic performance in alkaline media, delivering a low onset overpotential of 12 mV and a low Tafel slope of 42.1 mV dec−1. Moreover, this self-supported monolithic electrode sustains a high current density of 1000 mA cm−2 and extended polarization over 20 h, outperforming the Pt/C benchmark. The superior performance is attributed to the superhydrophilic properties of the nanosheet microstructure and the synergistic effect of elements P and B, which favors dissociation of H2O, weakens surface H absorption, and suppresses Co oxidation. This work provides a new avenue for the design and optimization of transition metal boron phosphides for HER electrocatalysis.

Graphical abstract: Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction

Page: ^ Top