Jump to main content
Jump to site search

Issue 37, 2018
Previous Article Next Article

Rational design of Na(Li1/3Mn1/2Cr1/6)O2 exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries

Author affiliations

Abstract

Anionic redox reactions (O2−/O), an alternative to conventional cationic redox reactions (Mn+/M(n+1)+; M: transition metal), have recently been identified as essential to achieve high energy density cathodes for sodium-ion batteries (SIBs). To overcome the drawbacks of anionic redox reactions leading to phase change and separation in the newly discovered Na(Li1/3Mn2/3)O2 material (NLMO, ∼4.2 V vs. Na/Na+ with a high charge capacity of 190 mAh g−1), we have rationally designed high energy density Na(Li1/3Mn1/2Cr1/6)O2 (NLMCO) in which the Cr 3d-electron is coupled with the labile O 2p-electron coordinated with Mn4+ for charge compensation during desodiation processes. NLMCO exhibits reduced phase change and separation, and chemomechanical strain and stress compared to NLMO and is thus expected to show high electrochemical performance, where the formation of short O–O bonds is not observed. By correlating the thermodynamic energy behavior with the redox mechanism in NLMO, it is concluded that our systematically designed cation–anion-coupled NLMCO is an excellent cathode material, introducing advanced materials of formula Na(Li1/3M2/3(1−y)Mcy)O2 (M and Mc: transition metals with stabilized M4+ species and cationic redox active Mc4+ species) for next-generation SIBs.

Graphical abstract: Rational design of Na(Li1/3Mn1/2Cr1/6)O2 exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries

Back to tab navigation

Supplementary files

Publication details

The article was received on 16 Mar 2018, accepted on 02 Aug 2018 and first published on 02 Aug 2018


Article type: Paper
DOI: 10.1039/C8TA02435A
Citation: J. Mater. Chem. A, 2018,6, 18036-18043
  •   Request permissions

    Rational design of Na(Li1/3Mn1/2Cr1/6)O2 exhibiting cation–anion-coupled redox reactions with superior electrochemical, thermodynamic, atomic, and chemomechanical properties for advanced sodium-ion batteries

    D. Kim, M. Cho and K. Cho, J. Mater. Chem. A, 2018, 6, 18036
    DOI: 10.1039/C8TA02435A

Search articles by author

Spotlight

Advertisements