Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 23, 2018
Previous Article Next Article

Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries

Author affiliations

Abstract

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play an important role in the air electrode reactions of rechargeable Zn–air batteries. However, noble metal-based catalysts for the ORR and OER always suffer from high cost and poor stability. Carbon-based materials with many advantages such as low cost, good conductivity, a large specific surface area and considerable durability are considered as promising alternatives to noble metal-based catalysts. In particular, the doping of heteroatoms into carbon has been proven to be an effective method to improve catalytic performance. Herein, we synthesized N, F, P ternary doped macro-porous carbon fibers (NFPC) as a bifunctional catalyst for primary and rechargeable Zn–air batteries for the first time via an electrospinning method with subsequent thermal annealing. The uniform distribution of heteroatoms in the macroporous carbon fibers induced a greatly improved catalytic efficiency towards the ORR and OER, showing exceptional properties in Zn–air systems.

Graphical abstract: Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries

Back to tab navigation

Supplementary files

Article information


Submitted
15 Mar 2018
Accepted
02 May 2018
First published
03 May 2018

J. Mater. Chem. A, 2018,6, 10918-10925
Article type
Paper

Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries

M. Wu, Y. Wang, Z. Wei, L. Wang, M. Zhuo, J. Zhang, X. Han and J. Ma, J. Mater. Chem. A, 2018, 6, 10918
DOI: 10.1039/C8TA02416B

Social activity

Search articles by author

Spotlight

Advertisements