Issue 22, 2018

A stretchable and super-robust graphene superhydrophobic composite for electromechanical sensor application

Abstract

Stretchable superhydrophobic materials are of potential interest for next-generation multi-functional haptic technologies particularly suited for wearable device and artificial skin applications. However, the practical applications of stretchable superhydrophobic materials are hindered by some issues, such as low mechanical robustness, harmful chemicals, etc. Here, we partially embedded perfluorosilane-coated graphene into thermoplastic polyurethane (TPU) by a dissolution and resolidification method. Due to the exceptional physical properties of graphene, the resulting nanocomposites could maintain their superhydrophobicity after toleration of strain up to 400%, man-made destruction by hands or sandpapers, pollution by oil, immersion in various corrosive liquids, and heat treatment at 150 °C for 24 h. It should be noted that even under an ultra-large load of 2 kg (32.5 kPa pressure), this graphene composite could withstand the abrasion by sandpaper for 20.00 m without losing superhydrophobicity. More remarkably, the electrical resistance of this graphene superhydrophobic composite is sensitive to material deformation, and can be directly applied to gloves for real-time detection of human motions.

Graphical abstract: A stretchable and super-robust graphene superhydrophobic composite for electromechanical sensor application

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2018
Accepted
26 Apr 2018
First published
27 Apr 2018

J. Mater. Chem. A, 2018,6, 10404-10410

A stretchable and super-robust graphene superhydrophobic composite for electromechanical sensor application

P. Wang, B. Sun, Y. Liang, H. Han, X. Fan, W. Wang and Z. Yang, J. Mater. Chem. A, 2018, 6, 10404 DOI: 10.1039/C8TA01923A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements