Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 19, 2018

Research progress on vanadium-based cathode materials for sodium ion batteries

Author affiliations

Abstract

Sodium ion batteries (SIBs) have attracted increasing attention as one of the most promising candidates for cost-effective, high-energy rechargeable batteries. Owing to their high theoretical capacity and energy density, and rich electrochemical interaction with Na+ (V2+–V5+), a large number of vanadium(V)-based cathode materials, including vanadium oxides (e.g., V2O5 and VO2), vanadium bronzes (e.g., NaxVO2, NaV3O8, NaV6O15 and δ-NH4V4O10), V-based phosphates (e.g., Na3V2(PO4)3, VOPO4, NaVOPO4, Na7V3(P2O7)4 and Na2(VO)P2O7) and F-containing V-based polyanions (e.g., NaVPO4F, Na3V2(PO4)2F3 and Na3(VOx)2(PO4)2F3−2x), have been explored for SIBs. In this review, we mainly summarize the basic structures, modified/optimized structures, synthetic methods and morphology control of V-based cathode materials for SIBs. Additionally, major drawbacks, emerging challenges and some perspectives on the development of V-based cathode materials for SIBs are also discussed.

Graphical abstract: Research progress on vanadium-based cathode materials for sodium ion batteries

Article information


Submitted
16 Feb 2018
Accepted
11 Apr 2018
First published
11 Apr 2018

J. Mater. Chem. A, 2018,6, 8815-8838
Article type
Review Article

Research progress on vanadium-based cathode materials for sodium ion batteries

Q. Wang, J. Xu, W. Zhang, M. Mao, Z. Wei, L. Wang, C. Cui, Y. Zhu and J. Ma, J. Mater. Chem. A, 2018, 6, 8815 DOI: 10.1039/C8TA01627E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements