Issue 18, 2018

Solid polymer electrolytes from a fluorinated copolymer bearing cyclic carbonate pendant groups

Abstract

A poly(vinylidene fluoride-co-(2-oxo-1,3-dioxolan-4-yl)methyl 2-(trifluoromethyl)acrylate) random copolymer, poly(VDF-co-MAF-cyCB), with a MAF-cyCB weight fraction of 59% was synthesized via free radical copolymerization of VDF and MAF-cyCB, which is a methacrylate bearing cyclocarbonate side-chain. This copolymer showed nano-structured morphology, where crystalline PVDF-rich domains co-existed with amorphous poly(VDF-co-MAF-cyCB) segments. Solid polymer electrolytes were further obtained by loading the poly(VDF-co-MAF-cyCB) copolymer with various amounts of LiClO4. The added lithium salt was dissolved in the poly(VDF-co-MAF-cyCB) amorphous phase, which allowed the formation of an ionic conducting phase exhibiting ionic conductivity values as high as 2 × 10−4 S cm−1 at room temperature for an optimum cyCB/Li+ molar ratio of 5. The addition of LiClO4 up to the optimum cyCB/Li+ molar ratio of 5 also increased the phase separation between the crystalline and amorphous phases, the mechanical properties of the material (up to 107 at 102 rad s−1) and the ionic conductivity (>10−3 S cm−1 at 80 °C). Furthermore, an electrochemical stability window from 1.4 to 4.9 V vs. Li/Li+ and relatively high values for the measured lithium ions transference numbers (0.68 at 40 °C) were observed, making the investigated system a promising candidate for next generation solid polymer electrolytes.

Graphical abstract: Solid polymer electrolytes from a fluorinated copolymer bearing cyclic carbonate pendant groups

Supplementary files

Article information

Article type
Paper
Submitted
09 Feb 2018
Accepted
11 Apr 2018
First published
11 Apr 2018

J. Mater. Chem. A, 2018,6, 8514-8522

Solid polymer electrolytes from a fluorinated copolymer bearing cyclic carbonate pendant groups

F. Boujioui, F. Zhuge, H. Damerow, M. Wehbi, B. Améduri and J. Gohy, J. Mater. Chem. A, 2018, 6, 8514 DOI: 10.1039/C8TA01409D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements