Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 24, 2018
Previous Article Next Article

Improved performance of binder-free zeolite Y for low-temperature sorption heat storage

Author affiliations

Abstract

The sustainable generation of energy and low-energy consuming technologies are two main approaches to combat climate change and reduce carbon dioxide emissions. Sorption heat storage is part of the second approach. Therefore, adsorbents that achieve high energy storage density under the working conditions of the storage application are required. In this study, the hydrophilic properties of a granulated binder-free zeolite NaY were tailored with the aim of increasing its performance at a desorption temperature of 140 °C for mobile sorption heat storage. Top-down approaches, such as chemical treatment with the chelating agent H4EDTA, treatment with the inorganic acid HCl and sequential ion exchange with acid treatment, were used in order to decrease the desorption temperature and optimize the low-temperature heat storage density. All the modified samples showed a decrease in the desorption temperature from 10 to 30 °C compared to the parent sample; only the desorption temperature of the acid-treated Mg-exchanged NaY sample increased. The effect of different treatments on the structural properties of the materials, including the generation of framework defects and mesoporosity was determined. The energy storage densities of the NaY and all the modified samples are considerably higher in comparison to the currently used adsorbent (NaMSX) in mobile sorption heat storage for low-temperature industrial waste heat recovery.

Graphical abstract: Improved performance of binder-free zeolite Y for low-temperature sorption heat storage

Back to tab navigation

Supplementary files

Article information


Submitted
25 Jan 2018
Accepted
22 May 2018
First published
24 May 2018

This article is Open Access

J. Mater. Chem. A, 2018,6, 11521-11530
Article type
Paper

Improved performance of binder-free zeolite Y for low-temperature sorption heat storage

A. Ristić, F. Fischer, A. Hauer and N. Zabukovec Logar, J. Mater. Chem. A, 2018, 6, 11521
DOI: 10.1039/C8TA00827B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements