Issue 14, 2018

Enhancement of thermoelectric performance via weak disordering of topological crystalline insulators and band convergence by Se alloying in Pb0.5Sn0.5Te1 − xSex

Abstract

Topological crystal insulators (TCIs) that have an even number of topologically protected Dirac bands driven by crystalline mirror symmetry have attracted much attention in condensed matter physics. Here, we demonstrate that a weak disordering in the topological crystalline state can enhance thermoelectric performance significantly due to highly dispersive band dispersion and high band degeneracy which guarantee high electrical mobility and a high Seebeck coefficient, respectively. When we perturb a crystalline mirror symmetry by Se-doping in TCI Pb0.5Sn0.5Te1 − xSex, the topological state becomes weak so that it eventually evolves the normal state. We experimentally prove the topological phase transition concerning Se concentration by X-ray Absorption Spectroscopy (XAS) and extended X-ray absorption Fine Structure (EXAFS) analysis. Small crystalline perturbation by Se doping (x = 0.05) significantly enhances thermoelectric performance due to the simultaneous enhancement of electrical conductivity and the Seebeck coefficient. Therefore, we report an exceptionally high ZT value of 1.9 at 800 K for the x = 0.05 compound which is a 313% enhancement of ZT compared with the pristine compound. This research proposes a new strategy for exploring high-performance thermoelectric materials by weak disordering of topological crystalline Dirac semimetals.

Graphical abstract: Enhancement of thermoelectric performance via weak disordering of topological crystalline insulators and band convergence by Se alloying in Pb0.5Sn0.5Te1 − xSex

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2018
Accepted
26 Feb 2018
First published
26 Feb 2018

J. Mater. Chem. A, 2018,6, 5870-5879

Enhancement of thermoelectric performance via weak disordering of topological crystalline insulators and band convergence by Se alloying in Pb0.5Sn0.5Te1 − xSex

D. Ginting, C. Lin, G. Kim, J. H. Yun, B. Yu, S. Kim, K. Ahn and J. Rhyee, J. Mater. Chem. A, 2018, 6, 5870 DOI: 10.1039/C8TA00381E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements