Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 8, 2018
Previous Article Next Article

Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets

Author affiliations

Abstract

Low flux and fouling are critical issues in membrane based separation processes. Here we report a two-dimensional (2D) MXene (Ti3C2Tx) modified with Ag nanoparticles (Ag@MXene) as a promising alternative for ultrafast water purification membrane applications. The novel Ag@MXene composite membrane with variable AgNP loadings (between 0–35%) was produced by self-reduction of silver nitrate on the surface of MXene sheets in solution, where the MXene acted simultaneously as a membrane forming material and a reducing agent. The most suitable membrane, 21% Ag@MXene with 470 nm thickness and 2.1 nm average pore size, exhibited an outstanding water flux (∼420 L m−2 h−1 bar−1) compared to the pristine MXene membrane (∼118 L m−2 h−1 bar−1) under the same experimental conditions. The 21% Ag@MXene membrane demonstrated high rejection efficiency for organic molecules with excellent flux recovery. Moreover, the 21% Ag@MXene composite membrane demonstrated more than 99% E. coli growth inhibition, while the MXene membrane exhibited only ∼60% bacteria growth inhibition compared to the control hydrophilic polyvinylidene difluoride (PVDF) based membrane. Furthermore, the 21% Ag@MXene membrane achieved favorable rejection to organic foulants like bovine serum albumin (BSA) and methyl green (MG) in comparison to other reported membranes. This combination of controlled permeability and bactericidal properties makes Ag@MXene layered nanosheets attractive candidates towards the development of nanofiltration membranes for water purification and biomedical applications.

Graphical abstract: Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets

Back to tab navigation

Supplementary files

Article information


Submitted
12 Dec 2017
Accepted
18 Jan 2018
First published
18 Jan 2018

J. Mater. Chem. A, 2018,6, 3522-3533
Article type
Paper

Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets

R. P. Pandey, K. Rasool, V. E. Madhavan, B. Aïssa, Y. Gogotsi and K. A. Mahmoud, J. Mater. Chem. A, 2018, 6, 3522
DOI: 10.1039/C7TA10888E

Social activity

Search articles by author

Spotlight

Advertisements