Synthesis of porphyrin-based two-dimensional metal–organic framework nanodisk with small size and few layers†
Abstract
A novel porphyrin-based two-dimensional metal–organic framework (MOF) nanodisk with small size and few layers was prepared by coordination chelation between meso-tetra(4-carboxyphenyl)porphine ligand and Zn(II) paddlewheel metal nodes. With 4,4′-biphenyldicarboxylic acid (BPDC) as nucleation modulator, the anisotropic growth of MOF was impeded by the increased steric hindrance, yielding small Zn–TCPP(BP) MOF crystals. The as-prepared MOF nanodisk exhibited good electrocatalytic activity and selectivity towards nitrite due to the independent distribution of the porphyrin molecules in the framework and the sandwich structure of the prepared Zn–TCPP(BP) nanodisk, which increased the accessible active sites.