Issue 6, 2019

Using machine learning to discover shape descriptors for predicting emulsion stability in a microfluidic channel

Abstract

In soft matter consisting of many deformable objects, object shapes often carry important information about local forces and their interactions with the local environment, and can be tightly coupled to the bulk properties and functions. In a concentrated emulsion, for example, the shapes of individual droplets are directly related to the local stress arising from interactions with neighboring drops, which in turn determine their stability and the resulting rheological properties. Shape descriptors used in prior work on single drops and dilute emulsions, where droplet–droplet interactions are largely negligible and the drop shapes are simple, are insufficient to fully capture the broad range of droplet shapes in a concentrated system. This paper describes the application of a machine learning method, specifically a convolutional autoencoder model, that learns to: (1) discover a low-dimensional code (8-dimensional) to describe droplet shapes within a concentrated emulsion, and (2) predict whether the drop will become unstable and undergo break-up. The input consists of images (N = 500 002) of two-dimensional droplet boundaries extracted from movies of a concentrated emulsion flowing through a confined microfluidic channel as a monolayer. The model is able to faithfully reconstruct droplet shapes, as well as to achieve a classification accuracy of 91.7% in the prediction of droplet break-up, compared with ∼60% using conventional scalar descriptors based on droplet elongation. It is observed that 4 out of the 8 dimensions of the code are interpretable, corresponding to drop skewness, elongation, throat size, and surface curvature, respectively. Furthermore, the results show that drop elongation, throat size, and surface curvature are dominant factors in predicting droplet break-up for the flow conditions tested. The method presented is expected to facilitate follow-on work to identify the relationship between drop shapes and the interactions with other drops, and to identify potentially new modes of break-up mechanisms in a concentrated system. Finally, the method developed here should also apply to other soft materials such as foams, gels, and cells and tissues.

Graphical abstract: Using machine learning to discover shape descriptors for predicting emulsion stability in a microfluidic channel

Supplementary files

Article information

Article type
Paper
Submitted
08 Oct 2018
Accepted
12 Dec 2018
First published
13 Dec 2018

Soft Matter, 2019,15, 1361-1372

Author version available

Using machine learning to discover shape descriptors for predicting emulsion stability in a microfluidic channel

J. W. Khor, N. Jean, E. S. Luxenberg, S. Ermon and S. K. Y. Tang, Soft Matter, 2019, 15, 1361 DOI: 10.1039/C8SM02054J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements