Issue 45, 2018

Polymer margination in uniform shear flows

Abstract

We address the issue of polymer margination (migration towards surfaces) in uniform shear flows through extensive LBMD (lattice-Boltzmann molecular dynamics) simulations. In particular we consider the effect of monomer size, a on the chain's overall margination tendency for chains of length N = 16, 32 monomers in flows at multiple shear rates [small gamma, Greek, dot above]. We observed higher margination of chains with larger radii monomers in comparison to smaller radii monomer chains of the same length N. We quantify this effect by considering various measures such as the distribution of the maximum extent of the chain into the channel bulk, zm, distribution of its center of mass in the direction normal to the surface, zc and the distributions of the chain's radius of gyration in directions parallel and perpendicular to the surface i.e. Rx, Ry and Rz respectively.

Graphical abstract: Polymer margination in uniform shear flows

Article information

Article type
Paper
Submitted
13 Jul 2018
Accepted
30 Oct 2018
First published
01 Nov 2018

Soft Matter, 2018,14, 9209-9219

Polymer margination in uniform shear flows

V. Balasubramanian and C. Denniston, Soft Matter, 2018, 14, 9209 DOI: 10.1039/C8SM01445K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements