Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 42, 2018
Previous Article Next Article

Effect of ionic strength on the structure and elongational kinetics of vimentin filaments

Author affiliations

Abstract

Intermediate filaments are a major structural element in the cytoskeleton of animal cells that mechanically integrate other cytoskeletal components and absorb externally applied stress. Their role is likely to be linked to their complex molecular architecture which is the product of a multi-step assembly pathway. Intermediate filaments form tetrameric subunits which assemble in the presence of monovalent salts to form unit length filaments that subsequently elongate by end-to-end annealing. The present work characterizes this complex assembly process using reconstituted vimentin intermediate filaments with monovalent salts as an assembly trigger. A multi-scale approach is used, comprising static light scattering, dynamic light scattering and quantitative scanning transmission electron microscopy (STEM) mass measurements. Light scattering reveals the radius of gyration (Rg), molecular weight (Mw) and diffusion coefficient (D) of the assembling filaments as a function of time and salt concentration (cS) for the given protein concentration of 0.07 g L−1. At low cS (10 mM KCl) no lateral or elongational growth is observed, whereas at cS = 50–200 mM, the hydrodynamic cross-sectional radius and the elongation rate increases with cS. Rgversus Mw plots suggest that the mass per unit length increases with increasing salt content, which is confirmed by STEM mass measurements. A kinetic model based on rate equations for a two step process is able to accurately describe the variation of mass, length and diffusion coefficient of the filaments with time and provides a consistent description of the elongation accelerated by increasing cS.

Graphical abstract: Effect of ionic strength on the structure and elongational kinetics of vimentin filaments

Back to tab navigation

Supplementary files

Article information


Submitted
16 May 2018
Accepted
24 Aug 2018
First published
27 Aug 2018

Soft Matter, 2018,14, 8445-8454
Article type
Paper

Effect of ionic strength on the structure and elongational kinetics of vimentin filaments

C. G. Lopez, O. Saldanha, A. Aufderhorst-Roberts, C. Martinez-Torres, M. Kuijs, G. H. Koenderink, S. Köster and K. Huber, Soft Matter, 2018, 14, 8445
DOI: 10.1039/C8SM01007B

Social activity

Search articles by author

Spotlight

Advertisements