Issue 16, 2018

A temperature-responsive supramolecular hydrogel: preparation, gel–gel transition and molecular aggregation

Abstract

In this study, a novel supramolecular hydrogel, abbreviated as AGC16/NTS, was designed and constructed by the molecular self-assembly of a cationic gemini surfactant, 1,3-bis(N,N-dimethyl-N-cetylammonium)-2-propylacrylatedibromide (AGC16), and an anionic aromatic gelator, trisodium 1,3,6-naphthalenetrisulfonate (NTS). The AGC16/NTS hydrogel was able to form in a mass ratio range of AGC16 and NTS from 20 : 1 to 10 : 1. It was interestingly found that AGC16/NTS exhibited two phase transitions (gel-to-gel and gel-to-sol) observed by visual and rheological measurements during the heating process, which is rarely reported in the previous literature reports of hydrogels prepared using low molecular weight gelators. Cryogenic scanning electron microscopy (cryo-SEM), fluorescence emission spectroscopy and X-ray diffraction (XRD) were used to investigate the temperature-responsive properties and molecular self-assembly mechanism of the hydrogel AGC16/NTS. During the gel-to-gel transition process, the temperature-responsive changes in the visual appearance of AGC16/NTS (turbid to transparent) were clearly observed. Compared with the transparent gel, the turbid gel possesses higher mechanical strength and a much more compact network mophology due to stronger intermolecular hydrophobic association beetween gelators. The molecular self-assembly modes for the two different hydrogel states (turbid and transparent gel) were proposed, helping to further understand the hydrogel transition mechanisms at a molecular level.

Graphical abstract: A temperature-responsive supramolecular hydrogel: preparation, gel–gel transition and molecular aggregation

Article information

Article type
Paper
Submitted
30 Jan 2018
Accepted
13 Mar 2018
First published
14 Mar 2018

Soft Matter, 2018,14, 3090-3095

A temperature-responsive supramolecular hydrogel: preparation, gel–gel transition and molecular aggregation

L. Wang, X. Shi and J. Wang, Soft Matter, 2018, 14, 3090 DOI: 10.1039/C8SM00220G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements