Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 24, 2018

Adaptive structure of gels and microgels with sliding cross-links: enhanced softness, stretchability and permeability

Author affiliations

Abstract

We propose an experimentally-inspired model of gels and microgels with sliding cross-links, and use this model to study the mechanical and structural properties with molecular dynamics simulations. In the model, the gels and microgels are made of linear polymer chains with threaded rings, which are capable of sliding along the chains, and bulky end-groups keeping the rings threaded (thus mimicking polyrotaxanes); the chains are covalently linked to each other not through the backbones but through the rings. Both gels and microgels are shown to be much softer in the regime of intermediate and large deformations and also much more stretchable than the topologically equivalent chemical counterparts. The physical reason for that is the mobility of the cross-links which leads to the formation of long, longitudinally oriented “subchains” between cross-linked rings upon uniaxial deformation. The microgels are tested for adsorption on a solid flat surface and for interaction with colloidal particles of different sizes. We demonstrate that the sliding microgel is subjected to stronger flattening on the surface than the chemical one. Enforced penetration of solid particles into the sliding microgel without breaking of covalent bonds is predicted even if the size of the particles is comparable to or larger than the mesh size of the chemical microgel and smaller than the size of polyrotaxane. This penetration is accompanied by the disappearance of the cavity: the microgel is characterized by adaptive porosity tunable to the guest-object.

Graphical abstract: Adaptive structure of gels and microgels with sliding cross-links: enhanced softness, stretchability and permeability

Article information


Submitted
26 Jan 2018
Accepted
24 May 2018
First published
24 May 2018

Soft Matter, 2018,14, 5098-5105
Article type
Paper

Adaptive structure of gels and microgels with sliding cross-links: enhanced softness, stretchability and permeability

A. A. Gavrilov and I. I. Potemkin, Soft Matter, 2018, 14, 5098 DOI: 10.1039/C8SM00192H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements