Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 9, 2018
Previous Article Next Article

Ion transport mechanisms in bipolar membranes for (photo)electrochemical water splitting

Author affiliations

Abstract

Bipolar membranes (BPMs) have attracted growing interest in electrochemical and photoelectrochemical systems, as they allow the unique ability to pair two different electrolytes which can be optimized for their respective oxidation and reduction reactions. Understanding the membrane voltage at a non-extreme pH gradient (ΔpH < 14) is an important step towards practical applications for electrochemical conversions, as many (photo-)electrodes and catalysts can only operate efficiently in a limited pH range. To obtain a better understanding of the individual effects that determine the BPM voltage, a complete series of experiments measuring the actual BPM voltage as a function of the pH, salt type/concentration, flow rate and current density is needed. In this paper, we present experimental results of voltage–current relations for a BPM using 16 different pH differences, 4 concentrations, 7 flow rates and permeation of 6 different ionic species. The results show that both ion cross-over and local diffusion boundary layers play important roles in the BPM voltage. We also show that the supporting electrolyte composition plays an important role, even more important than the pH itself, which is an important parameter to realize practical application of BPMs in electrochemical cells.

Graphical abstract: Ion transport mechanisms in bipolar membranes for (photo)electrochemical water splitting

Back to tab navigation

Supplementary files

Article information


Submitted
08 Mar 2018
Accepted
14 Jun 2018
First published
14 Jun 2018

Sustainable Energy Fuels, 2018,2, 2006-2015
Article type
Paper

Ion transport mechanisms in bipolar membranes for (photo)electrochemical water splitting

D. A. Vermaas, S. Wiegman, T. Nagaki and W. A. Smith, Sustainable Energy Fuels, 2018, 2, 2006
DOI: 10.1039/C8SE00118A

Social activity

Search articles by author

Spotlight

Advertisements