Jump to main content
Jump to site search

Issue 48, 2018
Previous Article Next Article

Cs3VO(O2)2CO3: an exceptionally thermostable carbonatoperoxovanadate with an extremely large second-harmonic generation response

Author affiliations

Abstract

A novel nonlinear optical (NLO) carbonatoperoxovanadate, Cs3VO(O2)2CO3, with an exceptionally high thermostability was successfully synthesized by introducing highly polarizable Cs+ cations and inorganic polydentate carbonate anions into asymmetric peroxovanadates. The structure of Cs3VO(O2)2CO3 is composed of distorted [VO(O2)2CO3]3− units and charge balancing Cs+ cations. The title compound exhibits the largest NLO intensity ever found in the current carbonate NLO materials, i.e., 23.0 times that of KH2PO4 (KDP). The remarkably strong second-harmonic generation (SHG) response originates from the synergistic effect of the exceedingly polarizable Cs+ cations, distortive polyhedra of the V5+ cation, delocalized π orbitals in CO3 groups, and distorted localized π orbitals in O2 groups. First-principles calculations indicated that introducing the polarizable cations into peroxovanadates not only induces the enhancement of the SHG response but also improves the thermal stability of the framework.

Graphical abstract: Cs3VO(O2)2CO3: an exceptionally thermostable carbonatoperoxovanadate with an extremely large second-harmonic generation response

Back to tab navigation

Supplementary files

Publication details

The article was received on 17 Aug 2018, accepted on 22 Sep 2018 and first published on 24 Sep 2018


Article type: Edge Article
DOI: 10.1039/C8SC03672A
Chem. Sci., 2018,9, 8957-8961
  • Open access: Creative Commons BY-NC license
    All publication charges for this article have been paid for by the Royal Society of Chemistry

  •   Request permissions

    Cs3VO(O2)2CO3: an exceptionally thermostable carbonatoperoxovanadate with an extremely large second-harmonic generation response

    G. Zou, Z. Lin, H. Zeng, H. Jo, S. Lim, T. You and K. M. Ok, Chem. Sci., 2018, 9, 8957
    DOI: 10.1039/C8SC03672A

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements