Jump to main content
Jump to site search

Issue 4, 2018
Previous Article Next Article

Coupling CFD–DEM and microkinetic modeling of surface chemistry for the simulation of catalytic fluidized systems

Author affiliations

Abstract

In this work, we propose numerical methodologies to combine detailed microkinetic modeling and Eulerian–Lagrangian methods for the multiscale simulation of fluidized bed reactors. In particular, we couple the hydrodynamics description by computational fluid dynamics and the discrete element method (CFD–DEM) with the detailed surface chemistry by means of microkinetic modeling. The governing equations for the gas phase are solved through a segregated approach. The mass and energy balances for each catalytic particle, instead, are integrated adopting both the coupled and the operator-splitting approaches. To reduce the computational burden associated with the microkinetic description of the surface chemistry, in situ adaptive tabulation (ISAT) is employed together with operator-splitting. The catalytic partial oxidation of methane and steam reforming on Rh are presented as a showcase to assess the capability of the methods. An accurate description of the gas and site species is achieved along with up to 4 times speed-up of the simulation, thanks to the combined effect of operator-splitting and ISAT. The proposed approach represents an important step for the first-principles based multiscale analysis of fluidized reactive systems.

Graphical abstract: Coupling CFD–DEM and microkinetic modeling of surface chemistry for the simulation of catalytic fluidized systems

Back to tab navigation

Supplementary files

Article information


Submitted
30 Mar 2018
Accepted
01 May 2018
First published
01 Jun 2018

This article is Open Access

React. Chem. Eng., 2018,3, 527-539
Article type
Paper

Coupling CFD–DEM and microkinetic modeling of surface chemistry for the simulation of catalytic fluidized systems

R. Uglietti, M. Bracconi and M. Maestri, React. Chem. Eng., 2018, 3, 527
DOI: 10.1039/C8RE00050F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements