Jump to main content
Jump to site search

Issue 60, 2018, Issue in Progress
Previous Article Next Article

Fabrication of polytetrafluoroethylene nanofibrous membranes for guided bone regeneration

Author affiliations

Abstract

In this study, we first prepared the precursor polytetrafluoroethylene (PTFE)/poly(ethylene oxide) (PEO) nanofibrous membranes by electrospinning with different PTFE/PEO weight ratios. These membranes exhibited three-dimensional interconnected pore structures. The average diameter of the precursor nanofibres decreased with increased PTFE contents from 633 ± 34 nm (PTFE/PEO weight ratio of 5 : 1) to 555 ± 63 nm (PTFE/PEO weight ratio of 7 : 1) because of the decrease in solution viscosity. Then, the precursor membranes were sintered with different temperatures to obtain the PTFE nanofibrous membranes, resulting in the average diameter of the nanofibres increasing from 633 ± 34 nm to 947 ± 78 nm with the increase in sintering temperature; consequently, the membrane became more compact. This compaction caused a decrease in porosity from 76.5 ± 2.9% to 69.1 ± 2.6% and an increase in water contact angle from 94.1 ± 4.2° to 143.3 ± 3.5°. In addition, the mechanical properties of the PTFE nanofibrous membranes increased with increasing sintering temperature. Cytocompatibility test results revealed that the PTFE350 membrane, which was sintered at 350 °C, promoted the proliferation and differentiation of MC3T3-E1 cells more rapidly than other membrane types. These results suggested that the PTFE nanofibrous membranes could be ideal biomaterials in tissue engineering for bone regeneration.

Graphical abstract: Fabrication of polytetrafluoroethylene nanofibrous membranes for guided bone regeneration

Back to tab navigation

Publication details

The article was received on 02 Jul 2018, accepted on 01 Oct 2018 and first published on 08 Oct 2018


Article type: Paper
DOI: 10.1039/C8RA05637D
RSC Adv., 2018,8, 34359-34369
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Fabrication of polytetrafluoroethylene nanofibrous membranes for guided bone regeneration

    J. Park, J. Lee, C. Kim and Y. Kim, RSC Adv., 2018, 8, 34359
    DOI: 10.1039/C8RA05637D

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements