Jump to main content
Jump to site search

Issue 39, 2018
Previous Article Next Article

Highly efficient green synthesis and photodynamic therapeutic study of hypericin and its derivatives

Author affiliations

Abstract

A highly efficient synthetic pathway for hypericin (7a) was achieved under mild conditions with an overall yield over two steps of 92% using emodinanthrone as a starting material, where protohypericin, a key precursor of hypericin, was synthesized in water with microwave assistance, which was then photocyclized to hypericin with a high yield via 1 h irradiation in a visible light reactor equipped with 575 nm monochromatic lamps. In addition, the method could be used to synthesize hypericin derivatives (7b–d) with similar overall yields. Furthermore, their effects of photodynamic therapy (PDT) were evaluated on A431, HepG-2, and MCF-7 cell lines. The PDT of 7b was better than that of 7a, whereas 7c and 7d were worse. Unlike other cell lines, MCF-7 was not sensitive to any of 7a–d at the same concentrations.

Graphical abstract: Highly efficient green synthesis and photodynamic therapeutic study of hypericin and its derivatives

Back to tab navigation

Supplementary files

Article information


Submitted
01 May 2018
Accepted
02 Jun 2018
First published
13 Jun 2018

This article is Open Access

RSC Adv., 2018,8, 21786-21792
Article type
Paper

Highly efficient green synthesis and photodynamic therapeutic study of hypericin and its derivatives

Y. Zhang, K. Shang, X. Wu, S. Song, Z. Li, Z. Pei and Y. Pei, RSC Adv., 2018, 8, 21786
DOI: 10.1039/C8RA03732A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements