Issue 35, 2018, Issue in Progress

Global minimum beryllium hydride sheet with novel negative Poisson's ratio: first-principles calculations

Abstract

As one of the most prominent metal-hydrides, beryllium hydride has received much attention over the past several decades, since 1978, and is considered as an important hydrogen storage material. By reducing the dimensionality from 3 to 2, the beryllium hydride monolayer is isoelectronic with graphene; thus the existence of its two-dimensional (2D) form is theoretically feasible and experimentally expected. However, little is known about its 2D form. In this work, by a global minimum search with the particle swarm optimization method via density functional theory computations, we predicted two new stable structures for the beryllium hydride sheets, named α–BeH2 and β–BeH2 monolayers. Both structures have more favorable thermodynamic stability than the recently reported planar square form (Nanoscale, 2017, 9, 8740), due to the forming of multicenter delocalized Be–H bonds. Utilizing the recently developed SSAdNDP method, we revealed that three-center-two-electron (3c–2e) delocalized Be–H bonds are formed in the α–BeH2 monolayer, while for the β–BeH2 monolayer, novel four-center-two-electron (4c–2e) delocalized bonds are observed in the 2D system for the first time. These unique multicenter chemical bonds endow both α– and β–BeH2 with high structural stabilities, which are further confirmed by the absence of imaginary modes in their phonon spectra, the favorable formation energies comparable to bulk and cluster beryllium hydride, and the high mechanical strength. These results indicate the potential for experimental synthesis. Furthermore, both α– and β–BeH2 are wide-bandgap semiconductors, in which the α–BeH2 has unusual mechanical properties with a negative Poisson's ratio of −0.19. If synthesized, it would attract interest both in experiment and theory, and be a new member of the 2D family isoelectronic with graphene.

Graphical abstract: Global minimum beryllium hydride sheet with novel negative Poisson's ratio: first-principles calculations

Article information

Article type
Paper
Submitted
21 Mar 2018
Accepted
16 May 2018
First published
25 May 2018
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2018,8, 19432-19436

Global minimum beryllium hydride sheet with novel negative Poisson's ratio: first-principles calculations

F. Li, U. Aeberhard, H. Wu, M. Qiao and Y. Li, RSC Adv., 2018, 8, 19432 DOI: 10.1039/C8RA02492H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements