Jump to main content
Jump to site search

Issue 25, 2018
Previous Article Next Article

Graphene inclusion controlling conductivity and gas sorption of metal–organic framework

Author affiliations

Abstract

A general approach to prepare composite films of metal–organic frameworks and graphene has been developed. Films of copper(II)-based HKUST-1 and HKUST-1/graphene composites were grown solvothermally on glassy carbon electrodes. The films were chemically tethered to the substrate by diazonium electrografting resulting in a large electrode coverage and good stability in solution for electrochemical studies. HKUST-1 has poor electrical conductivity, but we demonstrate that the addition of graphene to HKUST-1 partially restores the electrochemical activity of the electrodes. The enhanced activity, however, does not result in copper(II) to copper(I) reduction in HKUST-1 at negative potentials. The materials were characterised in-depth: microscopy and grazing incidence X-ray diffraction demonstrate uniform films of crystalline HKUST-1, and Raman spectroscopy reveals that graphene is homogeneously distributed in the films. Gas sorption studies show that both HKUST-1 and HKUST-1/graphene have a large CO2/N2 selectivity, but the composite has a lower surface area and CO2 adsorption capacity in comparison with HKUST-1, while CO2 binds stronger to the composite at low pressures. Electron paramagnetic resonance spectroscopy reveals that both monomeric and dimeric copper units are present in the materials, and that the two materials behave differently upon hydration, i.e. HKUST-1/graphene reacts slower by interaction with water. The changed gas/vapour sorption properties and the improved electrochemical activity are two independent consequences of combining graphene with HKUST-1.

Graphical abstract: Graphene inclusion controlling conductivity and gas sorption of metal–organic framework

Back to tab navigation

Supplementary files

Article information


Submitted
20 Mar 2018
Accepted
02 Apr 2018
First published
16 Apr 2018

This article is Open Access

RSC Adv., 2018,8, 13921-13932
Article type
Paper

Graphene inclusion controlling conductivity and gas sorption of metal–organic framework

P. Lamagni, B. L. Pedersen, A. Godiksen, S. Mossin, X. Hu, S. U. Pedersen, K. Daasbjerg and N. Lock, RSC Adv., 2018, 8, 13921
DOI: 10.1039/C8RA02439A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements