Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 21, 2018
Previous Article Next Article

Mesoporous TiO2 coating on carbon–sulfur cathode for high capacity Li–sulfur battery

Author affiliations

Abstract

In this paper, a meso-porous TiO2 (titania) coating is shown to effectively protect a carbon–sulfur composite cathode from polysulfide dissolution. The cathode consisted of a sulfur impregnated carbon support coated with a few microns thick mesoporous titania layer. The carbon–sulfur cathode is made using activated carbon powder (ACP) derived from biomass. The mesoporous titania coated carbon–sulfur cathodes exhibit a retention capacity after 100 cycles at C/3 rate (433 mA g −1) and stabilized at a capacity around 980 mA h g−1. The electrochemical impedance spectroscopy (EIS) of the sulfur cathodes suggests that the charge transfer resistance at the anode, (Ract) is stable for the titania coated sulfur electrode in comparison to a continuous increase in Ract for the uncoated electrode implying mitigation of polysulfide shuttling for the protected cathode. Stability in the cyclic voltammetry (CV) data for the first 5 cycles further confirms the polysulfide containment in the titania coated cathode while the uncoated sulfur electrode shows significant irreversibility in the CV with considerable shifting of the voltage peak positions. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) studies confirm the adsorption of soluble polysulfides by mesoporous titania.

Graphical abstract: Mesoporous TiO2 coating on carbon–sulfur cathode for high capacity Li–sulfur battery

Back to tab navigation

Supplementary files

Article information


Submitted
13 Feb 2018
Accepted
16 Mar 2018
First published
26 Mar 2018

This article is Open Access

RSC Adv., 2018,8, 11622-11632
Article type
Paper

Mesoporous TiO2 coating on carbon–sulfur cathode for high capacity Li–sulfur battery

R. Dharmasena, A. K. Thapa, R. K. Hona, J. Jasinski, M. K. Sunkara and G. U. Sumanasekera, RSC Adv., 2018, 8, 11622
DOI: 10.1039/C8RA01380B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements