Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 22, 2018
Previous Article Next Article

Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn

Author affiliations

Abstract

Highly sensitive and wearable chemical sensors for the detection of toxic gas molecules are given significant attention for a variety of applications in human health care and environmental safety. Herein, we demonstrated fiber-type gas sensors based on graphene oxide functionalized with organic molecules such as heptafluorobutylamine (HFBA), 1-(2-methoxyphenyl)piperazine (MPP), and 4-(2-keto-1-benzimidazolinyl)piperidine (KBIP) by assembling functionalized graphene oxide (FGO) on a single yarn fabric. These gas sensors of FGO on yarn exhibited extraordinarily higher sensitivity upon exposure to gas molecules than chemically reduced graphene oxide due to many active functional groups on the GO surface. Furthermore, the mechanical stability and chemical durability of the resulting gas sensors are well-maintained. Based on these results, we expected that our sensors with high sensitive and wearability will provide a good premise for wearable chemical sensors-based multidisciplinary applications.

Graphical abstract: Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn

Back to tab navigation

Associated articles

Supplementary files

Article information


Submitted
07 Feb 2018
Accepted
20 Mar 2018
First published
27 Mar 2018

This article is Open Access

RSC Adv., 2018,8, 11991-11996
Article type
Paper

Highly sensitive and wearable gas sensors consisting of chemically functionalized graphene oxide assembled on cotton yarn

Min-A. Kang, S. Ji, S. Kim, C. Park, S. Myung, W. Song, S. S. Lee, J. Lim and K. An, RSC Adv., 2018, 8, 11991
DOI: 10.1039/C8RA01184B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements