Jump to main content
Jump to site search

Issue 23, 2018, Issue in Progress
Previous Article Next Article

CO2–C evolution rate in an incubation study with straw input to soil managed by different tillage systems

Author affiliations

Abstract

A laboratory incubation experiment was conducted to assess the impact of straw input on CO2–C emissions. After the winter wheat (Triticum aestivum L.) growing season, soil samples were collected from the 0–20 cm soil layer. The experiment was conducted on a brown loam soil, classified as a Udoll according to the U. S. soil taxonomy. Treatment levels consisted of three tillage practices: sub-soiling (ST), no-till (NT) and the conventional tillage (CT), two straw management (with and without input of straw), three temperature (25, 30 and 35 °C), and three moisture regimes (55%, 65% and 75% of field moisture capacity or FMC). The results showed that the rate of straw decomposition was the highest in the soil under NT management. The relationship between rate of cumulative CO2–C and straw decomposition was significant under NT (R2 = 0.52). The soil CO2–C release under incubation was significantly higher with than without the input of straw (R2 = 0.95). Furthermore, soil respiration increased with increases in incubation temperature and FMC. At 75% FMC, the rate of CO2–C release increased by 21.9 mg kg−1 d−1 at 30 °C and 32.0 mg kg−1 d−1 at 35 °C compared with that at 25 °C. At 35 °C, the rate of CO2–C release increased by 43.6 mg kg−1 d−1 at 65% FMC and 51.2 mg kg−1 d−1 at 75% FMC incubation than that of at 55% FMC under ST. The degree of control on the CO2–C evolution rate during the pre-incubation period and with higher incubation temperature and FMC was better for the soil from NT than that from CT and ST, and better yet for the soil from ST than that from CT.

Graphical abstract: CO2–C evolution rate in an incubation study with straw input to soil managed by different tillage systems

Back to tab navigation

Article information


Submitted
23 Jan 2018
Accepted
24 Mar 2018
First published
03 Apr 2018

This article is Open Access

RSC Adv., 2018,8, 12588-12596
Article type
Paper

CO2–C evolution rate in an incubation study with straw input to soil managed by different tillage systems

X. S. Li, H. F. Han, T. Y. Ning and R. Lal, RSC Adv., 2018, 8, 12588
DOI: 10.1039/C8RA00708J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements