Jump to main content
Jump to site search

Issue 1, 2018
Previous Article Next Article

Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV

Author affiliations

Abstract

Due to the quantum confinement effects, the bandgap of two-dimensional (2D) perovskites increases when the thickness of the inorganic slabs decreases. This could result in insufficient light absorption that limits the overall performance of perovskite solar cells. Here we report a series of small bandgap 2D perovskites using mixed butylammonium (BA) and formamidinium (FA) cations, i.e. (BA)2(FA)n−1PbnI3n+1 (n = 1–5). In particular, 2D perovskite (BA)2(FA)2Pb3I10 shows a small bandgap of 1.51 eV, which is comparable to state-of-the-art three-dimensional perovskites. A strongly preferential out-of-plane crystallographic alignment of the inorganic perovskite component in the (BA)2(FA)2Pb3I10 film is achieved by the addition of thiourea in the precursor. This significantly improves charge transport and thus leads to highly efficient inverted solar cells with a planar structure of ITO/PEDOT:PSS/(BA)2(FA)2Pb3I10/PC61BM/BCP/Ag. With the best power conversion efficiency of 6.88%, we demonstrated the highest PCE reported for FA based low-n (n < 4) 2D perovskite solar cells. By virtue of the stable 2D perovskites, the unencapsulated device retains 80% efficiency after storing in air with a humidity of 25 ± 5% for 25 days, indicating excellent stability against moisture and oxygen.

Graphical abstract: Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV

Back to tab navigation

Supplementary files

Article information


Submitted
16 Oct 2017
Accepted
04 Nov 2017
First published
08 Nov 2017

Mater. Chem. Front., 2018,2, 121-128
Article type
Research Article

Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV

J. Yan, W. Fu, X. Zhang, J. Chen, W. Yang, W. Qiu, G. Wu, F. Liu, P. Heremans and H. Chen, Mater. Chem. Front., 2018, 2, 121
DOI: 10.1039/C7QM00472A

Social activity

Search articles by author

Spotlight

Advertisements