Issue 28, 2018

Cyano-substituted benzochalcogenadiazole-based polymer semiconductors for balanced ambipolar organic thin-film transistors

Abstract

Due to their high-lying lowest unoccupied molecular orbitals (LUMOs), π-conjugated polymers based on benzothiadiazole and its derivatives typically are p-type. We report here the successful development of two narrow bandgap, ambipolar donor–acceptor copolymers, PDCNBT2T and PDCNBSe2T, which are based on new cyano-substituted strong electron acceptors, 4,7-dibromo-5,6-dicyano-2,1,3-benzothiadiazole (DCNBT) and 4,7-dibromo-5,6-dicyano-2,1,3-benzoselenadiazole (DCNBSe), respectively. Compared to their polymer analogues with fluorine substituents, the LUMO was lowered by a big margin of ca. 0.6 eV and the bandgap was reduced by 0.2–0.3 eV for the cyano-substituted polymers. Therefore, the cyano-substituted benzothiadiazole polymers showed very low-lying LUMO levels of ca. 4.3 eV. Benefiting from their narrow bandgaps of 1.1–1.2 eV and appropriately positioned LUMO levels, both polymers exhibit well balanced ambipolar transport characteristics in organic thin-film transistors, which differ from the p-type dominating transport properties of their fluorinated polymer analogues. A balanced hole/electron mobility of 0.59/0.47 cm2 V−1 s−1 was achieved for polymer PDCNBT2T, and a reduced hole/electron mobility of 0.018/0.014 cm2 V−1 s−1 was observed for the benzoselenadiazole-based PDCNBSe2T due to its lower crystallinity. These results show that the electron mobility can be enhanced by approximately two orders versus the electron mobility of the previously reported 4,7-di(thiophen-2-yl)-5,6-dicyano-2,1,3-benzothiadiazole-based polymer. This improvement was achieved by using the new acceptor units without additional electron-rich thiophene flanks, which allow a higher degree of freedom in selecting the donor co-unit and more effective tuning of energy levels of frontier molecular orbitals.

Graphical abstract: Cyano-substituted benzochalcogenadiazole-based polymer semiconductors for balanced ambipolar organic thin-film transistors

Supplementary files

Article information

Article type
Paper
Submitted
09 Apr 2018
Accepted
11 Jun 2018
First published
11 Jun 2018

Polym. Chem., 2018,9, 3873-3884

Cyano-substituted benzochalcogenadiazole-based polymer semiconductors for balanced ambipolar organic thin-film transistors

S. Shi, H. Wang, P. Chen, M. A. Uddin, Y. Wang, Y. Tang, H. Guo, X. Cheng, S. Zhang, H. Y. Woo and X. Guo, Polym. Chem., 2018, 9, 3873 DOI: 10.1039/C8PY00540K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements