Jump to main content
Jump to site search

Issue 44, 2018
Previous Article Next Article

Expedient synthesis of trifunctional oligoethyleneglycol-amine linkers and their use in the preparation of PEG-based branched platforms

Author affiliations

Abstract

We designed a convergent synthesis pathway that provides access to trifunctional oligoethyleneglycol-amine (OEG-amine) linkers. By applying the reductive coupling of a primary azide to bifunctional OEG-azide precursors, the corresponding symmetrical dialkylamine bearing two homo-functional end chain groups and a central nitrogen was obtained. These building blocks bear minimal structural perturbation compared to the native OEG backbone which makes them attractive for biomedical applications. The NMR investigations of the mechanism process reveal the formation of nitrile and imine intermediates which can react with the reduced free amine form. Additionally, these trifunctional OEG-amine linkers were employed in a coupling reaction to afford branched multifunctional PEG dendrons which are molecularly defined. These discrete PEG-based dendrons (n = 16, 18 and 36) could be useful for numerous applications where multivalency is required.

Graphical abstract: Expedient synthesis of trifunctional oligoethyleneglycol-amine linkers and their use in the preparation of PEG-based branched platforms

Back to tab navigation

Supplementary files

Publication details

The article was received on 27 Aug 2018, accepted on 22 Oct 2018 and first published on 22 Oct 2018


Article type: Paper
DOI: 10.1039/C8OB02097C
Citation: Org. Biomol. Chem., 2018,16, 8579-8584
  •   Request permissions

    Expedient synthesis of trifunctional oligoethyleneglycol-amine linkers and their use in the preparation of PEG-based branched platforms

    S. Ursuegui, J. P. Schneider, C. Imbs, F. Lauvoisard, M. Dudek, M. Mosser and A. Wagner, Org. Biomol. Chem., 2018, 16, 8579
    DOI: 10.1039/C8OB02097C

Search articles by author

Spotlight

Advertisements