Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

The scope and limitations are described of reacting unsaturated tosylhydrazones with O3 followed by Et3N for the generation of 1,4- and 1,5-diazocarbonyl systems. Tosylhydrazones, from tosylhydrazide condensation with readily available δ- and ε-unsaturated α-ketoesters, led in the former case to a 2-pyrazoline whereas the latter cases led to α-diazo-ε-ketoesters, although a terminal alkene produced a tetrahydropyridazinol. Using the ozonolysis–Et3N strategy, tosylhydrazones from cyclic enones give 2,5- and 2,6-diazoketones with aldehyde or ester functionality at the 1-position; the α-diazoaldehydes prefer the s-trans conformation, with a rotation barrier of 74 kJ mol−1 at 25 °C determined by NMR. This one-pot ozonolysis/Bamford–Stevens chemistry demonstrates both the tolerance of tosylhydrazones to ozone, and the subsequently added amine playing a dual role to directly transform the intermediate tosylhydrazone ozonides into products containing reactive diazo and ketone functionalities; such adducts are of particular value as precursors to cyclic carbonyl ylides for 1,3-dipolar cycloadditions.

Graphical abstract: On the ozonolysis of unsaturated tosylhydrazones as a direct approach to diazocarbonyl compounds

Page: ^ Top