Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Molecular recognition of stable organic radicals is a relatively novel, but important structural binding motif in supramolecular chemistry. Here, we report on a redox-switchable veratrole-fused tetrathiafulvalene derivative VTTF which is ideally suited for this purpose and for the incorporation into stimuli-responsive systems. As revealed by electrochemistry, UV/Vis measurements, X-ray analysis, and electrocrystallisation, VTTF can be reversibly oxidised to the corresponding radical-cation or dication which shows optoelectronic and structural propterties similar to tetrathiafulvalene and tetrakis(methylthio)tetrathiafulvalene. However, theoretical calculations, variable temperature EPR, and NIR spectroscopy indicate that the dispersion-driven binding in the mixed-valence dimer (VTTF2+ (KMV = 69 M−1 in CH2Cl2) and the radical-cation dimer (VTTF˙+)2 (KRC = 38 M−1 in CH3CN) is significantly enhanced by the additional veratrole π-surface in comparison to pristine tetrathiafulvalene.

Graphical abstract: An aryl-fused redox-active tetrathiafulvalene with enhanced mixed-valence and radical-cation dimer stabilities

Page: ^ Top