Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 4, 2019
Previous Article Next Article

Tailored Ag–Cu–Mg multielemental nanoparticles for wide-spectrum antibacterial coating

Author affiliations

Abstract

Bactericidal nanoparticle coatings are very promising for hindering the indirect transmission of pathogens through cross-contaminated surfaces. The challenge, limiting their employment in nosocomial environments, is the ability of tailoring the coating's physicochemical properties, namely, composition, cytotoxicity, bactericidal spectrum, adhesion to the substrate, and consequent nanoparticles release into the environment. We have engineered a new family of nanoparticle-based bactericidal coatings comprising Ag, Cu, and Mg and synthesized by a green gas-phase technique. These coatings present wide-spectrum bactericidal activity on both Gram-positive and Gram-negative reference strains and tunable physicochemical properties of relevance in view of their “on-field” deployment. The link between material and functional properties is rationalized based on a multidisciplinary and multitechnique approach. Our results pave the way for engineering biofunctional, fully tunable nanoparticle coatings, exploiting an arbitrarily wide number of elements in a straightforward, eco-friendly, high-throughput, one-step process.

Graphical abstract: Tailored Ag–Cu–Mg multielemental nanoparticles for wide-spectrum antibacterial coating

Back to tab navigation

Supplementary files

Article information


Submitted
16 Oct 2018
Accepted
21 Dec 2018
First published
27 Dec 2018

Nanoscale, 2019,11, 1626-1635
Article type
Paper

Tailored Ag–Cu–Mg multielemental nanoparticles for wide-spectrum antibacterial coating

G. Benetti, E. Cavaliere, R. Brescia, S. Salassi, R. Ferrando, A. Vantomme, L. Pallecchi, S. Pollini, S. Boncompagni, B. Fortuni, M. J. Van Bael, F. Banfi and L. Gavioli, Nanoscale, 2019, 11, 1626
DOI: 10.1039/C8NR08375D

Social activity

Search articles by author

Spotlight

Advertisements