Jump to main content
Jump to site search

Issue 45, 2018
Previous Article Next Article

Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown by chemical vapor deposition

Author affiliations

Abstract

Tungsten diselenide (WSe2) is a particularly interesting 2D material due to its p-type conductivity. Here we report a systematic single-step process to optimize crystal size by variation of multiple growth parameters resulting in hexagonal single crystals up to 165 μm wide. We then show that these large single crystals can be controllably in situ doped with the acceptor Niobium (Nb). First principles calculations suggest that substitutional Nb doping of W would yield p-doping with no gap trap states. When used as the active layer of a field effect transistor (FET), doped crystals exhibit conventional p-type behavior, rather than the ambipolar behaviour seen in undoped WSe2 FETs. Nb-doped WSe2 FETs yield a maximum field effect mobility of 116 cm2 V−1 s−1, slightly higher than its undoped counterpart, with an on/off ratio of 106. Doping reduces the contact resistance of WSe2, reaching a minimum value of 0.55 kΩ μm in WSe2 FETs. The areal density of holes in Nb-doped WSe2 is approximately double that of undoped WSe2, indicating that Nb doping is working as an effective acceptor. Doping concentration can be controlled over several orders of magnitudes, allowing it to be used to control: FET threshold voltage, FET off-state leakage, and contact resistance.

Graphical abstract: Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown by chemical vapor deposition

Back to tab navigation

Supplementary files

Publication details

The article was received on 30 Aug 2018, accepted on 05 Nov 2018 and first published on 06 Nov 2018


Article type: Paper
DOI: 10.1039/C8NR07070A
Citation: Nanoscale, 2018,10, 21374-21385

  •   Request permissions

    Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown by chemical vapor deposition

    S. K. Pandey, H. Alsalman, J. G. Azadani, N. Izquierdo, T. Low and S. A. Campbell, Nanoscale, 2018, 10, 21374
    DOI: 10.1039/C8NR07070A

Search articles by author

Spotlight

Advertisements