Jump to main content
Jump to site search

Issue 47, 2018
Previous Article Next Article

Tunable 2D binary colloidal alloys for soft nanotemplating

Author affiliations


The realization of non-close-packed nanoscale patterns with multiple feature sizes and length scales via colloidal self-assembly is a highly challenging task. We demonstrate here the creation of a variety of tunable particle arrays by harnessing the sequential self-assembly and deposition of two differently sized microgel particles at the fluid–fluid interface. The two-step process is essential to achieve a library of 2D binary colloidal alloys, which are kinetically inaccessible by direct co-assembly. These versatile binary patterns can be exploited for a range of end-uses. Here we show that they can for instance be transferred to silicon substrates, where they act as masks for the metal-assisted chemical etching of binary arrays of vertically aligned silicon nanowires (VA-SiNWs) with fine geometrical control. In particular, continuous binary gradients in both NW spacing and height can be achieved. Notably, these binary VA-SiNW platforms exhibit interesting anti-reflective properties in the visible range, in agreement with simulations. The proposed strategy can also be used for the precise placement of metallic nanoparticles in non-close-packed arrays. Sequential depositions of soft particles enable therefore the exploration of complex binary patterns, e.g. for the future development of substrates for biointerfaces, catalysis and controlled wetting.

Graphical abstract: Tunable 2D binary colloidal alloys for soft nanotemplating

Back to tab navigation

Supplementary files

Article information

30 Aug 2018
21 Nov 2018
First published
22 Nov 2018

Nanoscale, 2018,10, 22189-22195
Article type

Tunable 2D binary colloidal alloys for soft nanotemplating

M. Á. Fernández-Rodríguez, R. Elnathan, R. Ditcovski, F. Grillo, G. M. Conley, F. Timpu, A. Rauh, K. Geisel, T. Ellenbogen, R. Grange, F. Scheffold, M. Karg, W. Richtering, N. H. Voelcker and L. Isa, Nanoscale, 2018, 10, 22189
DOI: 10.1039/C8NR07059H

Social activity

Search articles by author