Issue 41, 2018

Engineering and evaluation of amyloid assemblies as a nanovaccine against the Chikungunya virus

Abstract

The design of nanoparticles exposing a high density of antigens constitutes a promising strategy to address safety concerns of conventional life-attenuated vaccines as well as to increase the immunogenicity of subunit vaccines. In this study, we developed a fully synthetic nanovaccine based on an amyloid peptide sequence with high self-assembling properties. The immunogenic epitope E2EP3 from the E2 glycoprotein of the Chikungunya virus was used to evaluate the potential of a 10-mer peptide derived from an endogenous amyloidogenic polypeptide as a novel vaccine platform. Chimeric peptides, comprising the peptide antigen attached to the amyloid core by a short flexible linker, were prepared by solid phase synthesis. As observed using atomic force microscopy, these polypeptides self-assembled into linear and unbranched fibrils with a diameter ranging from 6 to 8 nm. A quaternary conformation rich in cross-β-sheets characterized these assemblies, as demonstrated by circular dichroism spectroscopy and thioflavin T fluorescence. ELISA assays and transmission electronic microscopy of immunogold labeled-fibrils revealed a high density of the Chikungunya virus E2 glycoprotein derived epitope exposed on the fibril surface. These amyloid fibrils were cytocompatible and were efficiently uptaken by macrophages. Mice immunization revealed a robust IgG response against the E2EP3 epitope, which was dependent on self-assembly and did not require co-injection of the Alhydrogel adjuvant. These results indicate that cross-β-sheet amyloid assemblies constitute suitable synthetic self-adjuvanted assemblies to anchor antigenic determinants and to increase the immunogenicity of peptide epitopes.

Graphical abstract: Engineering and evaluation of amyloid assemblies as a nanovaccine against the Chikungunya virus

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2018
Accepted
26 Sep 2018
First published
26 Sep 2018

Nanoscale, 2018,10, 19547-19556

Engineering and evaluation of amyloid assemblies as a nanovaccine against the Chikungunya virus

M. Babych, G. Bertheau-Mailhot, X. Zottig, J. Dion, L. Gauthier, D. Archambault and S. Bourgault, Nanoscale, 2018, 10, 19547 DOI: 10.1039/C8NR05948A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements