Molecular reorganization in bulk bottlebrush polymers: direct observation via nanoscale imaging†
Abstract
Bottlebrush polymers are important for a variety of applications ranging from drug delivery to electronics. The functional flexibility of the branched sidechains has unique assembly properties when compared to linear block polymer systems. However, reports of direct observation of molecular reorganization have been sparse. This information is necessary to enhance the understanding of the structure–property relationships in these systems and yield a rational design approach for novel polymeric materials. In this work, we report direct visualization of bottlebrush molecular organization and the formation of nematic-type ordering in an amorphous polymer bottlebrush system, captured with plasma etching and helium ion microscopy. By observing the unperturbed structure of this material at high resolution and quantifying image features, we were able to qualitatively link experimental results with structures predicted by coarse-grained molecular dynamics simulations. The direct visualization and computation workflow developed in this work can be applied to a broad variety of polymers with different architectures, linking imaging results with other, independent channels of information for better understanding and control of these classes of materials.