Issue 45, 2018

Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities

Abstract

Optogenetic techniques have changed the landscape of neuroscience by offering high temporal and spatial mapping of the activities of genetically defined population of cells with optical controlling tools. The mapping of optogenetic activities demands optogenetic indicators whose optical properties change in response to cellular activities, but the existing optogenetic indicators only specifically characterize limited optogenetic activities. Here, we propose a novel optogenetic indicator based on cellular deformation to characterize the activities of optogenetically engineered cells. The cellular activities triggered by light stimulation lead to changes in the cell membrane structure and result in cellular deformation, which is measured by atomic force microscopy. The deformation recordings of the cells expressing channelrhodopsin-2 (ChR2) and the corresponding control experiments together confirm that the deformation is generated generally when the cells are exposed to light, which is also validated indirectly via the change in the Young's modulus of the cells before and after absorption of photons. The activities of cells expressing different subtypes of opsins were also recorded using the optogenetic indicator of cellular deformation. This study provides a novel and general optogenetic indicator based on cellular deformation for monitoring the activities of optogenetically engineered cells. Moreover, this new optogenetic indicator offers ever-better tools for the applications of optogenetic activity mapping and neural and brain imaging.

Graphical abstract: Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities

Article information

Article type
Paper
Submitted
21 Jun 2018
Accepted
18 Sep 2018
First published
25 Sep 2018

Nanoscale, 2018,10, 21046-21051

Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities

G. Li, J. Yang, Y. Wang, W. Wang and L. Liu, Nanoscale, 2018, 10, 21046 DOI: 10.1039/C8NR05014G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements