Issue 36, 2018

Molecular signature of polyoxometalates in electron transport of silicon-based molecular junctions

Abstract

Polyoxometalates (POMs) are unconventional electro-active molecules with a great potential for applications in molecular memories, providing efficient processing steps onto electrodes are available. The synthesis of the organic–inorganic polyoxometalate hybrids [PM11O39{Sn(C6H4)C[triple bond, length as m-dash]C(C6H4)N2}]3− (M = Mo, W) endowed with a remote diazonium function is reported together with their covalent immobilization onto hydrogenated n-Si(100) substrates. Electron transport measurements through the resulting densely-packed monolayers contacted with a mercury drop as a top electrode confirms their homogeneity. Adjustment of the current–voltage curves with the Simmon's equation gives a mean tunnel energy barrier ΦPOM of 1.8 eV and 1.6 eV, for the Silicon–Molecules–Metal (SMM) junctions based on the polyoxotungstates (M = W) and polyoxomolybdates (M = Mo), respectively. This follows the trend observed in the electrochemical properties of POMs in solution, the polyoxomolybdates being easier to reduce than the polyoxotungstates, in agreement with lowest unoccupied molecular orbitals (LUMOs) of lower energy. The molecular signature of the POMs is thus clearly identifiable in the solid-state electrical properties and the unmatched diversity of POM molecular and electronic structures should offer a great modularity.

Graphical abstract: Molecular signature of polyoxometalates in electron transport of silicon-based molecular junctions

Supplementary files

Article information

Article type
Paper
Submitted
18 Jun 2018
Accepted
29 Aug 2018
First published
30 Aug 2018

Nanoscale, 2018,10, 17156-17165

Molecular signature of polyoxometalates in electron transport of silicon-based molecular junctions

M. Laurans, K. Dalla Francesca, F. Volatron, G. Izzet, D. Guerin, D. Vuillaume, S. Lenfant and A. Proust, Nanoscale, 2018, 10, 17156 DOI: 10.1039/C8NR04946G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements