Issue 37, 2018

Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces

Abstract

Analyzing impact dynamics is important for practical applications of superhydrophobic surfaces, because these nonwetting surfaces frequently encounter impacting liquid droplets in real environments. Thus, various studies have been conducted to investigate impact dynamics by examining the correlation between the behaviors of impacting liquid droplets and several determining parameters, such as impacting velocity, surface structure and surface energy. The impacting behaviors of pure water droplets were the main focus in most previous studies; the effect of surface tension, another critical parameter, on impact dynamics has rarely been investigated. In the current work, we have newly studied the effects of liquid surface tension on impact dynamics using an ethanol–water solution as a model liquid system. We systematically varied the liquid's surface tension between 72 and 32 mN m−1 by changing the ethanol concentration from 0 to 20 wt%. This range of composition drastically changed the surface tension while it did not significantly affect other physical properties, such as density and viscosity. For an impact dynamics study, two surfaces, namely ZnO nanowires (NWs) and ZnO/Si hierarchical (HIE) structures, were prepared. As the surface tension decreased, the static water contact angle (CA) decreased on both surfaces. Under dynamic conditions, our analysis using a high-speed camera and a quartz crystal microbalance (QCM) showed that lowering the surface tension causes the transition from the anti-wetting to wetting state. The transition We numbers were obtained on both surfaces for various surface tensions of liquids. Under the same dropping conditions of liquids, the ZnO/Si HIE surface shows higher transition We numbers than the ZnO NW surface, which is due to the higher fraction of air pockets in the hierarchical structure, originating from dual dimensional structures. To understand the mechanism of dynamic transition, we developed a model for ZnO/Si HIE structures based on three determining pressures: anti-wetting, wetting, and effective water hammer pressures. The modeling results explain the experimental observations. The results of our model system are highly useful for understanding the impact dynamic behaviors of various liquids on non-wetting surfaces.

Graphical abstract: Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2018
Accepted
24 Aug 2018
First published
27 Aug 2018

Nanoscale, 2018,10, 17842-17851

Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces

S. Baek, H. S. Moon, W. Kim, S. Jeon and K. Yong, Nanoscale, 2018, 10, 17842 DOI: 10.1039/C8NR04539A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements