Jump to main content
Jump to site search

Issue 34, 2018
Previous Article Next Article

Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution

Author affiliations

Abstract

Single-particle luminescence microscopy is a powerful method to extract information on biological systems that is not accessible by ensemble-level methods. Upconversion nanoparticles (UCNPs) are a particularly promising luminophore for single-particle microscopy as they provide stable, non-blinking luminescence and allow the avoidance of biological autofluorescence by their anti-Stokes emission. Recently, ensemble measurements of diluted aqueous dispersions of UCNPs have shown the instability of luminescence over time due to particle dissolution-related effects. This can be especially detrimental for single-particle experiments. However, this effect has never been estimated at the individual particle level. Here, the luminescence response of individual UCNPs under aqueous conditions is investigated by quantitative wide-field microscopy. The particles exhibit a rapid luminescence loss, accompanied by large changes in spectral response, leading to a considerable heterogeneity in their luminescence and band intensity ratio. Moreover, the dissolution-caused intensity loss is not correlated with the initial particle intensity or band ratio, which makes it virtually unpredictable. These effects and the subsequent development of their heterogeneity can be largely slowed down by adding millimolar concentrations of sodium fluoride in buffer. As a consequence, the presented data indicate that microscopy experiments employing UCNPs in an aqueous environment should be performed under conditions that carefully prevent these effects.

Graphical abstract: Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution

Back to tab navigation

Supplementary files

Publication details

The article was received on 14 May 2018, accepted on 30 Jul 2018 and first published on 31 Jul 2018


Article type: Communication
DOI: 10.1039/C8NR03892A
Citation: Nanoscale, 2018,10, 15904-15910
  •   Request permissions

    Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution

    O. Dukhno, F. Przybilla, V. Muhr, M. Buchner, T. Hirsch and Y. Mély, Nanoscale, 2018, 10, 15904
    DOI: 10.1039/C8NR03892A

Search articles by author

Spotlight

Advertisements