Issue 37, 2018

Fluorescent and photoacoustic bifunctional probe for the detection of ascorbic acid in biological fluids, living cells and in vivo

Abstract

Photoacoustic imaging (PAI) has emerged as a promising clinical technology, thanks to its high-resolution in deep tissues. However, the lack of specificity towards analytes limits further application of the PA probe in molecular imaging. To this end, we herein report a PA and fluorescence (FL) dual-modal probe for the selective detection of ascorbic acid (AA). To realize this design, cobalt oxyhydroxide (CoOOH) was adopted as a multifunctional platform (PA contrast agent, FL quencher and specific oxidant to AA) and hybridized with red-emissive carbon dots (RCDs). In the presence of AA, CoOOH is reduced to Co2+ and meanwhile releases RCDs, resulting in the decrease of PA and recovery of FL signals. We demonstrated the AA detection capabilities of the probe in complicated biological fluids (human serum and urine), living cells, and dual-modal FL/PA imaging in vivo. This work revealed the PAI capacity of CoOOH for the first time, which may inspire researchers to design other CoOOH-based PA probes and further employ RCDs in biology and the clinic.

Graphical abstract: Fluorescent and photoacoustic bifunctional probe for the detection of ascorbic acid in biological fluids, living cells and in vivo

Supplementary files

Article information

Article type
Paper
Submitted
26 Apr 2018
Accepted
13 Aug 2018
First published
24 Aug 2018

Nanoscale, 2018,10, 17834-17841

Fluorescent and photoacoustic bifunctional probe for the detection of ascorbic acid in biological fluids, living cells and in vivo

W. Xu, J. Chen, S. Sun, Z. Tang, K. Jiang, L. Song, Y. Wang, C. Liu and H. Lin, Nanoscale, 2018, 10, 17834 DOI: 10.1039/C8NR03435D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements