Jump to main content
Jump to site search


Tunable photoluminescence in a van der Waals heterojunction built from a MoS2 monolayer and a PTCDA organic semiconductor

Author affiliations

Abstract

We report the photoluminescence (PL) characteristics of a van der Waals (vdW) heterojunction constructed by simply depositing an organic semiconductor of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) onto a two-dimensional MoS2 monolayer. The crystallinity of PTCDA on MoS2 is significantly improved due to the vdW epitaxial growth. We observe an enhanced PL intensity and PL peak shift of the MoS2/PTCDA heterojunction compared with the solo MoS2 and PTCDA layer. The synergistic PL characteristics are believed to originate from the hybridization interaction between the MoS2 and the PTCDA as evidenced by density functional theory calculations and Raman measurements. The hybridization interfacial interaction is found to be greatly influenced by the crystalline ordering of the PTCDA film on the 2D MoS2. Our study opens up a new avenue to tune the PL of vdW heterojunctions consisting of TMDs and organic semiconductors for optoelectronic applications.

Graphical abstract: Tunable photoluminescence in a van der Waals heterojunction built from a MoS2 monolayer and a PTCDA organic semiconductor

Back to tab navigation

Supplementary files

Publication details

The article was received on 24 Apr 2018, accepted on 27 Jul 2018 and first published on 31 Jul 2018


Article type: Paper
DOI: 10.1039/C8NR03334J
Citation: Nanoscale, 2018, Advance Article
  •   Request permissions

    Tunable photoluminescence in a van der Waals heterojunction built from a MoS2 monolayer and a PTCDA organic semiconductor

    M. R. Habib, H. Li, Y. Kong, T. Liang, Sk. Md. Obaidulla, S. Xie, S. Wang, X. Ma, H. Su and M. Xu, Nanoscale, 2018, Advance Article , DOI: 10.1039/C8NR03334J

Search articles by author

Spotlight

Advertisements