Issue 29, 2018

Growth of boron nitride nanotubes from magnesium diboride catalysts

Abstract

The difficulty in synthesizing boron nitride nanotubes (BNNTs) in a conventional horizontal tube furnace by chemical vapor deposition (CVD) may be ascribed to the failure to identify suitable catalysts and nucleation particles. This report demonstrates that magnesium diboride (MgB2) can effectively catalyze the growth of BNNTs in such a tube furnace from various boron sources, including boron oxide (B2O3), boric acid (H3BO3), and a mixture of boron (B) and calcium oxide (CaO). This catalyst is more efficient than the possible magnesium oxide (MgO) or magnesium nitride (Mg3N2) catalysts. MgB2 efficiently catalyzes the formation of BNNTs by maintaining a liquid state and showing a dissolving capacity for B2O3 at the growth temperature, thus satisfying the criteria for the vapor–liquid–solid (VLS) mechanisms of one-dimensional nanomaterials. First-principles simulations demonstrate that B2O3 can be dissolved into the MgB2 nanoparticle. We believe that the strong catalytic behavior of MgB2 can be attributed to its robust nucleation for BNNTs and dissolubility for B2O3.

Graphical abstract: Growth of boron nitride nanotubes from magnesium diboride catalysts

Supplementary files

Article information

Article type
Communication
Submitted
18 Apr 2018
Accepted
27 Jun 2018
First published
27 Jun 2018

Nanoscale, 2018,10, 13895-13901

Growth of boron nitride nanotubes from magnesium diboride catalysts

S. E, L. Wu, C. Li, Z. Zhu, X. Long, R. Geng, J. Zhang, Z. Li, W. Lu and Y. Yao, Nanoscale, 2018, 10, 13895 DOI: 10.1039/C8NR03167C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements