Jump to main content
Jump to site search


Patterned liquid metal contacts for high density, stick-and-peel 2D material device arrays

Author affiliations

Abstract

Two-dimensional materials have shown great promise to enable novel wearable electronic devices ranging from sensors to energy generators. These developments are due to their high mechanical robustness, which allow them to retain high performance even at large deformations. Under these conditions, however, good electrical contacts become an important issue that cannot be addressed with conventional materials. Liquid metals could overcome this limitation by providing soft and compliant electrodes but to date no realistic heterointegration of nanomaterials and complex liquid metal contacts has been attempted. We here demonstrate the application of micrometer-sized electrical contacts to flexible, fragile and rough 2D materials using patterned liquid metal contacts. A novel deposition method enables the scalable and facile production of large arrays of contacts in arbitrary geometries. This ability permitted the single-step, fabrication-free and contamination-free production of concentric liquid metal-contacted graphene field effect transistors of comparable performance to traditional devices. We demonstrate that the contacts can be removed without damaging the 2D materials allowing the contacts to be reused. Finally, good contact could be made to complex morphologies and three-dimensional substrates, which highlights the potential of our approach to the characterization and application of nanomaterials in electronics.

Graphical abstract: Patterned liquid metal contacts for high density, stick-and-peel 2D material device arrays

Back to tab navigation

Supplementary files

Publication details

The article was received on 12 Apr 2018, accepted on 03 Jul 2018 and first published on 04 Jul 2018


Article type: Paper
DOI: 10.1039/C8NR02979B
Citation: Nanoscale, 2018, Advance Article
  •   Request permissions

    Patterned liquid metal contacts for high density, stick-and-peel 2D material device arrays

    Y. Chen, Y. Nguyen, S. Wu, Y. Chun, C. Chuang, Y. Hsieh and M. Hofmann, Nanoscale, 2018, Advance Article , DOI: 10.1039/C8NR02979B

Search articles by author

Spotlight

Advertisements