Issue 23, 2018

Ferromagnetic Cr2Te3 nanorods with ultrahigh coercivity

Abstract

Ferromagnetic Cr2Te3 nanorods were synthesized by a one-pot high-temperature organic-solution-phase method. The crystalline phases and magnetic properties can be systematically tuned by varying the molar ratio of the Cr and Te precursors. A magnetically hard phase, identified as chemically ordered Cr2Te3, is the dominating one at the precursor ratio between Cr : Te = 1 : 1.2 and 1 : 1.8. A magnetically soft phase, attributed to chemical disorder due to composition inhomogeneity and stacking faults, is present under either Cr-rich or Te-rich synthesis conditions. A large coercivity of 9.6 kOe is obtained for a Cr : Te precursor ratio of 1 : 1.8, which is attributed to the large magnetocrystalline anisotropy of ordered Cr2Te3 nanorods, and verified by density-functional theory calculations. The hard and soft phases sharing coherent interfaces co-exist in a seemingly single-crystalline nanorod, showing an unusual transition from exchange-coupled behavior at higher temperatures to two-phase behavior as the temperature is lowered.

Graphical abstract: Ferromagnetic Cr2Te3 nanorods with ultrahigh coercivity

Article information

Article type
Paper
Submitted
19 Mar 2018
Accepted
12 May 2018
First published
15 May 2018

Nanoscale, 2018,10, 11028-11033

Ferromagnetic Cr2Te3 nanorods with ultrahigh coercivity

F. Wang, J. Du, F. Sun, R. F. Sabirianov, N. Al-Aqtash, D. Sengupta, H. Zeng and X. Xu, Nanoscale, 2018, 10, 11028 DOI: 10.1039/C8NR02272K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements