Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 16, 2018
Previous Article Next Article

MoS2 nano flakes with self-adaptive contacts for efficient thermoelectric energy harvesting

Author affiliations

Abstract

We examine the potential of the low-dimensional material MoS2 for the efficient conversion of waste heat to electricity via the Seebeck effect. Recently monolayer MoS2 nano flakes with self-adaptive Mo6S6 contacts were formed, which take advantage of mechanical stability and chemical covalent bonding to the MoS2. Here, we study the thermoelectric properties of these junctions by calculating their conductance, thermopower and thermal conductance due to both electrons and phonons. We show that thermoelectric figures of merit ZT as high as ∼2.8 are accessible in these junctions, independent of the flake size and shape, provided the Fermi energy is close to a band edge. We show that Nb dopants as substituents for Mo atoms can be used to tune the Fermi energy, and despite the associated inhomogeneous broadening, room temperature values as high as ZT ∼ 0.6 are accessible, increasing to 0.8 at 500 K.

Graphical abstract: MoS2 nano flakes with self-adaptive contacts for efficient thermoelectric energy harvesting

Back to tab navigation

Supplementary files

Article information


Submitted
26 Feb 2018
Accepted
29 Mar 2018
First published
29 Mar 2018

This article is Open Access

Nanoscale, 2018,10, 7575-7580
Article type
Paper

MoS2 nano flakes with self-adaptive contacts for efficient thermoelectric energy harvesting

Q. Wu, H. Sadeghi and C. J. Lambert, Nanoscale, 2018, 10, 7575
DOI: 10.1039/C8NR01635F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements