Issue 20, 2018

Electrochemical polymerization of pyrene and aniline exclusively inside the pores of activated carbon for high-performance asymmetric electrochemical capacitors

Abstract

An asymmetric polymer capacitor was prepared from pyrene (PY), aniline (ANI), and commercially available activated carbon (AC) through a solvent-free preparation. PY and ANI were adsorbed into the AC host material in the gas phase and electrochemically polymerized exclusively inside the AC pores in an aqueous H2SO4 electrolyte (1 M). No volumetric expansion of the AC particles occurred upon the adsorption of monomers and their subsequent polymerizations; thus, the volumetric capacitance was enhanced by the inclusion of pseudocapacitive polypyrene (PPY) and polyaniline (PANI). The PPY and PANI structures formed inside the AC pores are very thin and have a large contact area with the conductive carbon surfaces. Therefore, the charge transfer distance between the polymers and the carbon surfaces was drastically shortened, significantly reducing the charge transfer resistance; i.e., high power density. The maximum volumetric capacitances for the PPY- and PANI-hybridized AC reached 314 and 299 F cm−3, respectively. Moreover, the strong adhesion derived from their large contact areas and adsorption capability of AC endow these materials with long cycle lifetimes. The PPY- and PANI-hybridized AC have different redox potentials and can be assembled into an asymmetric capacitor. The volumetric capacitance obtained for the asymmetric capacitor further surpassed that of the symmetric capacitor consisting of pristine AC, with high power density and long cycle lifetimes.

Graphical abstract: Electrochemical polymerization of pyrene and aniline exclusively inside the pores of activated carbon for high-performance asymmetric electrochemical capacitors

Supplementary files

Article information

Article type
Paper
Submitted
22 Feb 2018
Accepted
08 May 2018
First published
09 May 2018

Nanoscale, 2018,10, 9760-9772

Electrochemical polymerization of pyrene and aniline exclusively inside the pores of activated carbon for high-performance asymmetric electrochemical capacitors

H. Itoi, S. Maki, T. Ninomiya, H. Hasegawa, H. Matsufusa, S. Hayashi, H. Iwata and Y. Ohzawa, Nanoscale, 2018, 10, 9760 DOI: 10.1039/C8NR01529E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements