Issue 13, 2018

The graphene/n-Ge(110) interface: structure, doping, and electronic properties

Abstract

The implementation of graphene in semiconducting technology requires precise knowledge about the graphene–semiconductor interface. In our work the structure and electronic properties of the graphene/n-Ge(110) interface are investigated on the local (nm) and macro (from μm to mm) scales via a combination of different microscopic and spectroscopic surface science techniques accompanied by density functional theory calculations. The electronic structure of freestanding graphene remains almost completely intact in this system, with only a moderate n-doping indicating weak interaction between graphene and the Ge substrate. With regard to the optimisation of graphene growth it is found that the substrate temperature is a crucial factor, which determines the graphene layer alignment on the Ge(110) substrate during its growth from the atomic carbon source. Moreover, our results demonstrate that the preparation route for graphene on the doped semiconducting material (n-Ge) leads to the effective segregation of dopants at the interface between graphene and Ge(110). Furthermore, it is shown that these dopant atoms might form regular structures at the graphene/Ge interface and induce the doping of graphene. Our findings help to understand the interface properties of the graphene–semiconductor interfaces and the effect of dopants on the electronic structure of graphene in such systems.

Graphical abstract: The graphene/n-Ge(110) interface: structure, doping, and electronic properties

Supplementary files

Article information

Article type
Paper
Submitted
03 Jan 2018
Accepted
18 Feb 2018
First published
20 Feb 2018

Nanoscale, 2018,10, 6088-6098

The graphene/n-Ge(110) interface: structure, doping, and electronic properties

J. Tesch, F. Paschke, M. Fonin, M. Wietstruk, S. Böttcher, R. J. Koch, A. Bostwick, C. Jozwiak, E. Rotenberg, A. Makarova, B. Paulus, E. Voloshina and Y. Dedkov, Nanoscale, 2018, 10, 6088 DOI: 10.1039/C8NR00053K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements